Hemodynamic Effects of Dexmedetomidine Compared to Propofol in Critically Ill Adults

Ashley Cherniawski, Pharm.D.; Megan Cadiz, Pharm.D.; Jenna Holzhausen, Pharm.D., BCPS; Jim Winegardner, Pharm.D., BCPS, BCCCP

Department of Pharmaceutical Services ■ Beaumont Hospital – Royal Oak, MI

Introduction
- Sedation is used in the intensive care unit (ICU) to facilitate mechanical ventilation and is associated with decrease in:
 - Delirium
 - Ventilator dependent days
 - Mortality and morbidity
- The Society of Critical Care Medicine’s (SCCM) 2013 Clinical Practice Guidelines for the Management of Pain, Agitation, and Delirium recommend maintaining light levels of sedation for improved clinical outcomes!
- SCCM recommends using the Richmond Agitation-Sedation Scale (RASS) to monitor sedation levels
- Target RASS of 0 to -2 (Table 1)

Objectives
- **Primary**
 - Compare the hemodynamic effects associated with dexmedetomidine versus propofol during the first 24 hours of infusion
- **Secondary**
 - Evaluate the efficacy of first line sedative agents for sedation in critically ill patients
 - Characterize interventions utilized in treatment of sedative-induced hypotension and bradycardia

Methods
STUDY DESIGN
- Single center, retrospective, observational chart review
- This study was approved by the Institutional Review Board at Beaumont Health
- A convenience sample of patients administered propofol or dexmedetomidine between July 1, 2013 and July 1, 2015 will be reviewed for eligibility (Figure 1)
- Data will be collected from the electronic medical record

Eligibility Criteria
- Age ≥ 18 years old
- Mechanically ventilated, critically ill patients
- Target RASS of 0 to -2
- Hemodynamics (averaged ≥4 hours prior to sedative administration)
 - Mean arterial pressure (MAP)
 - Diastolic blood pressure (DBP)
 - Systolic blood pressure (SBP)
 - Heart rate (HR)

Exclusion Criteria
- Severe hypotension or bradycardia
 - Decreased cardiac output
 - Increased organ perfusion

Table 1. Richmond Agitation-Sedation Scale

<table>
<thead>
<tr>
<th>Degree of Sedation</th>
<th>RASS Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agitated</td>
<td>+3 to +4</td>
</tr>
<tr>
<td>Quiet and Calm</td>
<td>0</td>
</tr>
<tr>
<td>Lightly Sedated</td>
<td>-1 to -2</td>
</tr>
<tr>
<td>Deeply Sedated</td>
<td>-3 to -5</td>
</tr>
</tbody>
</table>

Modified from SCCM guidelines

Table 2. Propofol and Dexmedetomidine Pharmacokinetics

<table>
<thead>
<tr>
<th>Propofol</th>
<th>Dexmedetomidine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanism</td>
<td>Sedative hypnotic, GABA agonist</td>
</tr>
<tr>
<td>Dosage</td>
<td>Centrally acting α-2 adrenergic receptor agonist</td>
</tr>
<tr>
<td>Duration</td>
<td>1 – 2 minutes</td>
</tr>
<tr>
<td>Duration</td>
<td>5 – 10 minutes</td>
</tr>
</tbody>
</table>

Table 2 - Modified from SCCM guidelines

Table 3. Data Collection

<table>
<thead>
<tr>
<th>Baseline Data</th>
<th>Demographic information</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICU type and admission diagnosis</td>
<td></td>
</tr>
<tr>
<td>Acute Physiologic and Chronic Health Evaluation (APACHE) II Score</td>
<td></td>
</tr>
</tbody>
</table>

Primary Endpoints
- Frequency of severe hypotension and bradycardia events
 - Severe hypotension
 - MAP < 60 or a decrease in SBP of ≥40 mmHg or more from baseline
 - Severe bradycardia
 - HR < 50 bpm

Secondary Endpoints
- Time to target RASS
- Treatment of hemodynamic events
 - Sedative dosing
 - Vasopressor or inotrope use
 - Blood product transfusion or paralytics

Table 3 - Data Collection

References

Methods (Cont.)
DATA COLLECTION ENDPOINTS
- Data collection will conclude at the 24 hour time point or earlier if:
 - The patient is extubated, undergoes cardiac pulmonary resuscitation (CPR), or expires
 - Renal replacement therapy is initiated
 - Sedatives are discontinued

Statistical Analysis
- Data analysis will be performed with Statistical Analysis Software® (SAS) for Windows® version 9.3 and R for Windows® version 2.15.1
- Descriptive statistics
- Parametric variables:
 - Student’s t-test, Pearson chi-square test, and Fisher’s exact test
- Non-parametric variables:
 - Wilcoxon signed-rank test, Wilcoxon two-sample rank-sum test
- P-value ≤ 0.05 will be considered statistically significant

Rationale
- Studies have shown conflicting data on the rates of hemodynamic instability between the recommended agents
- Wide ranges of hypotension (23-98%) and bradycardia (3-42%) have been reported
- Recent studies in specific ICU populations (medical and neurocritical) report similar rates of hypotension and bradycardia between agents

Table 3 - Data Collection

Table 4. Data Collection

<table>
<thead>
<tr>
<th>Baseline Data</th>
<th>Demographic information</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICU type and admission diagnosis</td>
<td></td>
</tr>
<tr>
<td>Acute Physiologic and Chronic Health Evaluation (APACHE) II Score</td>
<td></td>
</tr>
</tbody>
</table>

Primary Endpoints
- Frequency of severe hypotension and bradycardia events
 - Severe hypotension
 - MAP < 60 or a decrease in SBP of ≥40 mmHg or more from baseline
 - Severe bradycardia
 - HR < 50 bpm

Secondary Endpoints
- Time to target RASS
- Treatment of hemodynamic events
 - Sedative dosing
 - Vasopressor or inotrope use
 - Blood product transfusion or paralytics

Table 4 - Data Collection

References

Disclosures
- Authors of this presentation have the following to disclose concerning potential financial or personal relationships with commercial entities that may have a direct or indirect interest in the subject matter of this presentation:
 - All authors have nothing to disclose.